12.5.1 TERMOGRAFÍA

12.5.1 TERMOGRAFÍA

La TIR es una técnica de ensayo no destructivo (END) sin contacto que obtiene la temperatura de la superficie de un cuerpo a través de la captación de la radiación infrarroja que ésta emite (ver figura 12). El mapa térmico de la superficie obtenido es llamado termograma.

Cuando el flujo de calor en un material es alterado por la presencia de anomalías o defectos provoca contrastes de temperatura en su superficie. El uso de la TIR como método no destructivo de inspección está basado en la obtención y el análisis de las imágenes de esos patrones térmicos.

Las principales técnicas de TIR se resumen en este artículo y se comentan algunas de sus aplicaciones. También se muestran algunos resultados de ensayos de TIR en materiales compuestos y componentes metálicos aeronáuticos.

Aplicaciones

  • Detección de agua en el sandwich de honeycomb
    •Detección de corrosión
    •Detección de de laminación

Ventajas

  • Capacidad de captar imágenes
    •No hay contacto directo
    •Método rápido
    •Bueno para detectar agua en el material compuesto

Desventajas

  • Necesita ser suministrado de agua caliente, lámparas, mantas térmicas, etc.
  • El tratamiento superficial o la pintura pueden influir en el resultado.
  • No se puede repetir en un corto período de tiempo.
  • Tiene limitada la profundidad de inspección.
  • Tiene limitada la profundidad de inspección.

termografia--para-id-end

                          Figura 12. Muestras termográficas en variables campos

La TIR es una técnica de ensayo no destructivo (END) sin contacto que obtiene la temperatura de la superficie de un cuerpo a través de la captación de la radiación infrarroja que ésta emite. El mapa térmico de la superficie obtenido es llamado termograma.

Cuando el flujo de calor en un material es alterado por la presencia de anomalías o defectos provoca contrastes de temperatura en su superficie. El uso de la TIR como método no destructivo de inspección está basado en la obtención y el análisis de las imágenes de esos patrones térmicos.

Técnicas de TIR

Las principales ventajas de las técnicas de TIR son las siguientes: es un método de inspección rápido y sin contacto que sirve para localizar defectos por debajo de la superficie, la interpretación de termogramas es muy sencilla (imágenes) y la radiación infrarroja no es nociva (al contrario que los rayos-x). Además puede ser aplicado a un amplio rango de materiales (tanto metálicos como compuestos) y áreas relativamente amplias pueden ser inspeccionadas en un único ensayo.

No obstante, su principal desventaja es que es efectivo únicamente en la detección de defectos poco profundos. También resulta complicado producir un calentamiento uniforme al aplicar las técnicas activas y pueden existir variaciones de emisividad en diferentes partes del cuerpo estudiado.

Termografía pasiva

La TIR pasiva se refiere a aquellos casos en los que no se usa ninguna estimulación de calentamiento o enfriamiento externo para provocar un flujo de calor en el cuerpo inspeccionado. El objeto estudiado produce un patrón de temperaturas típico por el hecho de estar involucrado en un proceso (industrial) que produce calor. Unos pocos grados de diferencia respecto a la temperatura normal de trabajo (referencia) del objeto muestra un comportamiento inusual. La TIR es capaz de capturar esta información de temperatura en tiempo real desde una distancia segura sin ninguna interacción con el objeto.

La TIR pasiva se usa, por ejemplo, para la monitorización del producto en procesos de fabricación, monitorización de procesos de soldadura o comprobación de la eficiencia de los discos de freno de automóviles. También puede ser usada en mantenimiento predictivo, como en rodamientos, turbinas y compresores, instalaciones eléctricas, tuberías enterradas o fugas de gas. Existen otras muchas aplicaciones no industriales como son las de tipo medicinal en detección de cáncer de pecho o desordenes vasculares, detección de fuegos, detección de objetivos (militar) o localización de pérdidas de calor y humedades en edificios.

Termografía activa

En termografía activa se usa una estimulación externa para provocar un flujo de calor interno en el objeto estudiado. Un defecto interno afectaría al flujo calorífico produciendo un contraste térmico en la superficie. Las técnicas de TIR activas principales son: TIR pulsada, step heating y TIR lock-in.

La TIR pulsada (Pulsed Thermography) consiste en aplicar un pulso corto de calor sobre el objeto (de 3 msg. a 2 s. dependiendo del material) y grabar el enfriamiento del espécimen. El frente térmico aplicado se propaga en el material y cuando encuentra un defecto el ratio de difusión es reducido produciendo un contraste de la temperatura sobre ese punto. De esta manera, el contraste de defectos más profundos aparecerá más tarde y con menor diferencia de temperaturas (ver figura  La TIR pulsada es usada, por ejemplo, en la inspección de componentes estructurales de aviones, control de calidad de soldadura por puntos, álabes de turbina, detección de desencolados, de laminaciones, grietas o corrosión.

jhkjh

                                          Figura 13. Configuración típica de TIR

http://www.interempresas.net/MetalMecanica/Articulos/11149-Termografia-infrarroja-ensayo-no-destructivo-deteccion-defectos-componentes-aerospaciales.html

En la técnica de Step Heating o termografía de pulso largo, el objeto es calentado continuamente a baja potencia y se monitoriza el incremento de temperatura de la superficie. Aplicaciones del step heating son, por ejemplo, la evaluación de espesores de recubrimientos y de uniones de recubrimiento a substrato en estructuras compuestas y también la detección de corrosión oculta en el fuselaje de aviones.

La TIR lock-in está basada en la generación de ondas de calor dentro del espécimen inspeccionado (por ejemplo, depositando periódicamente calor en el cuerpo por medio de una lámpara modulada) y monitorizando de forma sincronizada el campo de temperaturas oscilante obtenido mediante una computadora o un amplificador lock-in. Por transformación de Fourier se obtienen las imágenes de fase y amplitud de la temperatura. Las imágenes fase están menos afectadas por inhomogeneidades del calentamiento y de la emisividad, y son más sensibles en profundidad que otras técnicas de TIR. Sin embargo, requiere como mínimo la observación de un ciclo de modulación y cada ensayo es realizado para una frecuencia estudiando una profundidad cada vez, lo que aumenta el tiempo de inspección.

La TIR lock-in es usada, por ejemplo, en inspecciones de componentes estructurales, detección de remaches sueltos, investigación de estructuras de absorción de radar y detección de grietas, desencolados, etc. Si en lugar de realizar un calentamiento mediante lámparas de luz modulada se usa una vibración mecánica inducida externamente como excitación se hablaría de vibro-termografía.

Una alternativa es la utilización de un transductor piezoeléctrico como fuente de estimulación, que sería el caso de la denominada TIR lock-in ultrasónica. Estas dos últimas técnicas están dirigidas a la detección rápida de grietas en materiales metálicos, laminados y cerámicos, corrosión en planchas metálicas remachadas o de laminaciones en laminados. Otra variación es la TIR lock-in termoinductiva que excita corrientes de Eddy en materiales conductores mediante una bobina de inducción y la resistencia de los materiales genera un calentamiento local. La mayor densidad de corriente en las grietas provoca una temperatura mayor que es detectada por la cámara termográfica. Esta técnica ha sido probada en detección de grietas longitudinales en barras y tochos de acero aparecidas durante su moldeado en caliente y en álabes de compresores.

La TIR de fase pulsada (Phase Pulsed Thermography) es una mezcla entre la TIR lock-in y TIR pulsada. La aplicación del ensayo es la misma que en termografía pulsada pero la adquisición de datos es tratada mediante transformada de Fourier para obtener la amplitud y la fase de la imagen a diferentes frecuencias con un único ensayo, con la consecuente rapidez de ensayo. De igual manera, se puede conseguir una variación de la termografía lock-in ultrasónica utilizando un pulso ultrasónico en vez de una excitación continua. Esta técnica es denominada Ultrasound Burst Phase Thermography.

El siguiente caso, mostrado, es el de la localización de dos grietas en un componente de una aeronave de aluminio con su recubrimiento de pintura original. Al principio del enfriamiento)se pueden apreciar las grietas entre las indicaciones térmicas producidas por la textura de la pintura en esa zona. Posteriormente se aprecia la respuesta típica de las grietas ante ensayos de este tipo se produce un salto de temperatura entre ambos lados de la grieta, ya que la grieta actúa como barrera al flujo de calor.

A continuación se muestra un ejemplo simple de la capacidad de un adecuado tratamiento de los datos de temperatura capturados en un ensayo de TIR para mejorar la visualización de los defectos, e incluso permitir localizar defectos invisibles en los termogramas originales.

Figura 20. Termogramas en diferentes tiempos de enfriamiento de dos grietas en una pieza de aluminio.

Esta entrada fue publicada en 12. Ensayos no destructivos. Guarda el enlace permanente.

Deja una respuesta