Congenital adrenal hyperplasia

Deborah P Merke, Stefan R Bornstein

Congenital adrenal hyperplasia (CAH) due to deficiency of 21-hydroxylase is a disorder of the adrenal cortex characterised by cortisol deficiency, with or without aldosterone deficiency, and androgen excess. Patients with the most severe form also have abnormalities of the adrenal medulla and epinephrine deficiency. The severe classic form occurs in one in 15 000 births worldwide, and the mild non-classic form is a common cause of hyperandrogenism. Neonatal screening for CAH and gene-specific prenatal diagnosis are now possible. Standard hormone replacement fails to achieve normal growth and development for many children with CAH, and adults can experience iatrogenic Cushing’s syndrome, hyperandrogenism, infertility, or the development of the metabolic syndrome. This Seminar reviews the epidemiology, genetics, pathophysiology, diagnosis, and management of CAH, and provides an overview of clinical challenges and future therapies.

Congenital adrenal hyperplasia (CAH) describes a group of autosomal recessive disorders of cortisol biosynthesis. We discuss here 21-hydroxylase deficiency, which is the cause of about 95% of CAH cases. CAH caused by deficiency of 21-hydroxylase is characterised by cortisol deficiency, with or without aldosterone deficiency, and androgen excess.

CAH shows a range of severity. The clinical phenotype is typically classified as classic, the severe form, or non-classic, the mild or late-onset form. Classic CAH is subclassified as salt-losing or non-salt-losing (simple-virilising), reflecting the degree of aldosterone deficiency.

The lives of patients with CAH have improved greatly since the discovery that cortisone was an effective treatment for the disorder in the 1950s. Neonatal screening is being done in several countries. Gene-specific prenatal diagnosis is now feasible. Research on the pathophysiology of CAH has shown endocrinopathies beyond the characteristic abnormalities of the adrenal cortex, including adrenomedullary dysfunction and insulin resistance. Despite these advances, existing treatment has failed to achieve normal growth and development for many children with CAH, and the clinical management of adults is complicated by iatrogenic Cushing’s syndrome, hyperandrogenism, or infertility. We review here the epidemiology, genetics, pathophysiology, diagnosis, and management of CAH and provide an overview of the clinical challenges and future therapies that await further investigation.

Epidemiology

Data from several neonatal screening programmes show that CAH due to 21-hydroxylase deficiency is common. Data from roughly 6·5 million newborn infants screened in 13 countries (USA, France, Italy, New Zealand, Japan, UK, Brazil, Switzerland, Sweden, Germany, Portugal, Canada, and Spain) show an overall incidence of one in 15 000 livebirths for the classic form.5 Thus, the carrier frequency of classic CAH is about one in 60 individuals. Salt-losing CAH accounts for 67% of the cases reported and non-salt-losing CAH for 33%.5

Incidence varies according to ethnicity and geographical area. The highest rates of classic CAH occur in two geographically isolated populations: the Yupic Eskimos of Alaska (one in 280)1 and the French island of La Réunion (one in 2100).2 High rates have also been reported in Brazil (one in 7500)3 and the Philippines (one in 7000).1 In the USA, the incidence of CAH is lower in African-Americans than in the white population (one in 42 000 vs 15 500).4 Neonatal screening does not accurately detect non-classic CAH, so data on the incidence of the milder form of the disorder are lacking. However, non-classic CAH is estimated to be more common than classic CAH.
CAH, with a prevalence of one in 1000 in the white population. A study in New York City found that non-classic CAH is more frequent in certain ethnic populations, such as Jews of eastern European origin, Hispanics, and Yugoslavs (1·0–3·7%).

Genetics

The 21-hydroxylase gene is located on chromosome 6p21·3 within the HLA histocompatibility complex. There are two highly homologous 21-hydroxylase genes resulting from ancestral duplication: an active gene, CYP21A2 (CYP21B), and an inactive pseudogene CYP21A1P (CYP21A, CYP21P). CAH is unusual among genetic disorders in that most of the mutant alleles (about 90%) are generated by recombinations between the pseudo and active genes, and the active pseudogene are transferred to the active gene, the latter becoming incapable of encoding a normal enzyme; this process is called gene conversion. In patients, 1–2% of affected alleles are spontaneous mutations. When deleterious sequences normally present in the pseudo-gene are transferred to the active gene, the latter becomes incapable of encoding a normal enzyme; this process is called gene conversion. In patients, 1–2% of affected alleles are spontaneous mutations. Spontaneous recombinations between CYP21A2 and CYP21A1P are detected in one in 1010–1012 sperm cells. The high rate of intergenic recombination that occurs could be indirectly due to the position of the gene within the MHC.

Most patients are compound heterozygotes (ie, they have different mutations on the two alleles), and the clinical phenotype is generally related to the less severely mutated allele and, consequently, to the residual 21-hydroxylase activity. Several studies have suggested high concordance rates between genotype and phenotype in patients with the most severe and mildest forms of the disease, but less genotype–phenotype relation in moderately affected patients.

Pathophysiology

The pathophysiology of 21-hydroxylase-deficiency-related CAH is closely linked to the degree of enzyme deficiency. A defect in cortisol biosynthesis leads to a compensatory increase in pituitary production of corticotropin and hypothalamic production of corticotropin-releasing hormone (CRH) owing to a lack of the usual negative feedback by cortisol. Physiological glucocorticoid and mineralocorticoid replacement fails to replicate the close temporal relation between release of CRH, corticotropin, and subsequent cortisol pulses. Thus, supraphysiological doses of glucocorticoid are necessary in many patients to suppress excess adrenal production of androgens and oestrogens adequately. Moreover, intrauterine glucocorticoid deficiency can affect postnatal sensitivity to feedback inhibition, thus blunting the central effects of treatment. The resulting iatrogenic hypercortisolism, in combination with excess adrenal androgens and oestrogens, can stunt growth in children and cause damaging metabolic side-effects, resulting in insulin resistance, metabolic syndrome, and infertility (figure 1).

Increased expression of CRH may contribute to clinical manifestations of CAH, including psychological effects and changes in energy homeostasis. Oversecretion of CRH has been found in states of anxiety and depression, and the hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis characteristic of CAH might have negative psychological effects. Adrenocortical tumours have been found in high frequency compared with the general population, which suggests that chronic corticotropin stimulation has a role in formation of adrenocortical tumours. These issues are currently being researched.

Carriers or heterozygotes for CYP21 mutations have subtle abnormalities in the functioning of the HPA axis. After corticotropin stimulation, 50–80% of carriers show increased secretion of cortisol precursors, such as 17-hydroxyprogesterone, compared with healthy individuals. Carriers also have higher testosterone concentrations; lower 24 h urinary excretion of free cortisol, and higher corticotropin secretion after CRH stimulation. Carriers might be at risk of the development of clinically apparent adrenal masses and, according to one study, have increased vulnerability to psychological stress. Carriers are mostly free of symptoms and do not experience adrenal crises, hyperandrogenic symptoms, or disorders of growth and puberty.

Glucocorticoids are essential in the development and the continuing regulation of the adrenal medulla, and the adrenomedullary system is impaired in 21-hydroxylase-deficient mice and in severely affected patients. Glucocorticoids stimulate the expression of phenylethanolamine-N-methyltransferase, the enzyme that converts norepinephrine to epinephrine. Normal glucocorticoid secretion by the

Figure 1: Endocrine imbalances characteristic of CAH

Potential clinical manifestations are given in the text boxes.
zona fasciculata of the adrenal cortex is necessary for adrenomedullary organogenesis, and a developmental defect in the formation of the adrenal medulla has been shown in patients with salt-losing CAH. In human 21-hydroxylase-deficient adrenal glands, we found that chromaffin cells formed extensive neurites expanding between adrenocortical cells (figure 2). These findings accord with those from in-vitro studies that adrenal androgens promote outgrowth, whereas glucocorticoids preserve neuroendocrine cells.

The clinical implications of epinephrine deficiency in patients with CAH have been investigated lately. Measurement of adrenomedullary function could be a useful biomarker for disease severity in CAH. In one study, molecular genotype and plasma concentrations of free metanephrine, the O-methylated metabolite of epinephrine, predicted clinical phenotype with similar accuracy. The usefulness of measuring plasma metanephrine concentrations in newborn infants has not been studied. Epinephrine has a role in glucose homoeostasis, especially in young children, and patients with CAH receiving standard glucocorticoid replacement therapy have decreased adrenomedullary reserves and reduced epinephrine and blood-glucose responses to high-intensity exercise. Administration of additional hydrocortisone (double dose) before exercise was not beneficial and had no effect on the impaired metabolic response to exercise. Epinephrine deficiency most likely plays a major part in the impaired metabolic response to exercise. Epinephrine, and insulin resistance and raised serum leptin concentrations have been described in patients with CAH. The production and possibly action of leptin is inhibited by epinephrine deficiency, and this mechanism might have a role in the development of insulin resistance or polycystic ovaries in patients with CAH.

Hyperinsulinism has also been reported in patients with non-classic CAH, even before the institution of glucocorticoid therapy. Hyperinsulinism is an independent risk factor for hyperandrogenism in adolescent girls and in women and might have a role in insulin resistance or polycystic ovaries in patients with CAH. Thus, many endocrinopathies, including glucocorticoid and sex-steroid imbalances and adrenomedullary hypofunction, contribute to the metabolic disturbances observed in patients with CAH and theoretically put these patients at risk of development of the metabolic syndrome (figure 1).

Clinical features

The severity of CAH depends on the degree of 21-hydroxylase deficiency caused by CYP21A2 mutations. The classic forms present in childhood and are characterised by striking overproduction of cortisol precursors and adrenal androgens. In the most severe form, concomitant aldosterone deficiency leads to loss of salt. In the mildest form, there is sufficient cortisol production, but at the expense of excess androgens.

Female infants with classic CAH typically have ambiguous genitalia at birth because of exposure to high concentrations of androgens in utero, and CAH due to 21-hydroxylase deficiency is the most common cause of ambiguous genitalia in 46XX infants (figure 3, A). Characteristic findings include an enlarged clitoris, partly fused and rugose labia majora, and a common urogenital sinus in place of a separate urethra and vagina. The internal female organs, the uterus, fallopian tubes, and ovaries, are normal; Wolffian duct structures are not present. Boys with classic CAH have no signs of CAH at birth, except subtle hyperpigmentation and possible penile enlargement (figure 3, B). Thus, the age at diagnosis in boys varies according to the severity of aldosterone deficiency. Boys with the salt-losing form typically present at 7–14 days of life with vomiting, weight loss, lethargy, dehydration, hypoglycaemia, and hyperkalaemia, and can present in shock. Girls with the salt-losing form, if not treated soon after birth, would also experience a salt-losing adrenal crisis in the neonatal period. However, the ambiguous genitalia typically lead to early diagnosis and treatment. Boys with the non-salt-losing form present with early virilisation at age 2–4 years (figure 3, C).

Patients with non-classic CAH do not have cortisol deficiency, but instead have manifestations of hyperandrogenism, generally later in childhood or in early adulthood. These patients can present with early pubarche, or as young women with hirsutism (60%), oligomenorrhoea or amenorrhoea (54%) with polycystic ovaries, and acne (33%). 5–10% of children with precocious pubarche have been found to have non-classic CAH. Conversely, some women with non-classic CAH have no apparent clinical symptoms, and many men with non-classic CAH remain free of symptoms.

The proportion of patients with non-classic CAH who remain symptom-free is unknown, and women can go on to develop symptoms of hyperandrogenism later in
Overall, the frequency of non-classic CAH among women with infertility or presenting with symptoms of androgen excess is 1–2%. Although endocrinological testing reveals mild abnormalities in adrenal function, carriers typically do not have symptoms or signs of excess androgens and do not need treatment.

Diagnosis

A very high concentration of 17-hydroxyprogesterone (more than 242 nmol/L; normal less than 3 nmol/L at 3 days in full-term infant) in a randomly timed blood sample is diagnostic of classic 21-hydroxylase deficiency. Typically, salt-losing patients have higher 17-hydroxyprogesterone concentrations than non-salt-losers. False-positive results from neonatal screening are common with premature infants, and many screening programmes have established reference ranges that are based on weight and gestational age. A corticotropin stimulation test (250 μg cosyntropin) can be used to assess borderline cases. Genetic analysis can be helpful to confirm the diagnosis.

Randomly measured 17-hydroxyprogesterone concentrations can be normal in patients with non-classic CAH. Thus, the gold standard for diagnosis of the non-classic form is a corticotropin stimulation test, with measurement of 17-hydroxyprogesterone at 60 min. This test can be done at any time of day and at any time during the menstrual cycle. A stimulated concentration of 17-hydroxyprogesterone higher than 45 nmol/L is diagnostic of 21-hydroxylase deficiency. Many carriers have slightly raised concentrations of 17-hydroxyprogesterone (less than 30 nmol/L) after a corticotropin stimulation test. An early-morning (before 0800 h) measurement can be used for screening, but it is not as sensitive or specific as a corticotropin stimulation test. Early-morning 17-hydroxyprogesterone concentrations of less than 2·5 nmol/L in children and less than 6·0 nmol/L in women during the follicular phase rule out the diagnosis of non-classic CAH in most cases; higher values warrant a corticotropin stimulation test to establish the diagnosis.

Medical treatment

In classic CAH, glucocorticoids are given in doses sufficient to suppress adrenal androgen secretion partly, without total suppression of the HPA axis; mineralocorticoids are given to return electrolyte concentrations and plasma renin activity to normal. Physiological cortisol secretion rates are about 6 mg/m²

Figure 3: Clinical presentation of classic 21-hydroxylase deficiency

A: Female infants present at birth with ambiguous genitalia as a result of in-utero exposure to androgens. B: Boys with salt-losing CAH present at 7–10 days of age with a salt-losing adrenal crisis; some have hyperpigmentation on physical examination (note scrotal hyperpigmentation). C: Boys with the non-salt-losing form present with early virilisation and accelerated growth at age 2–4 years. Panels A and B reproduced with permission from Adis International Limited.
daily.64-58 and most patients have satisfactory control of androgen production with hydrocortisone doses of 12–18 mg/m² daily divided into two or three doses. The target 17-hydroxyprogesterone range is 12–36 nmol/L when measured in the early morning before medication. Adrenal androgen concentrations later in the day and after medication has been taken will be lower, but they should not be suppressed below the normal range because of risk of iatrogenic Cushing’s syndrome.

Hydrocortisone is the glucocorticoid of choice during childhood.59,60 Cortisone must be converted to cortisol for biological activity. Differences in the rate of conversion influence drug efficacy; thus, cortisone acetate is not recommended. Longer-acting glucocorticoids, such as prednisone (5.0–7.5 mg per day in two doses) and dexamethasone (0.25–0.50 mg at bedtime or in two doses), can be used in adults, but they are generally avoided in children because of concerns about growth suppression. However, the growth-suppressive effects of longer-acting glucocorticoid preparations could be dose related. A retrospective study of 17 children with CAH showed that once-daily administration of dexamethasone at a 70 to one relative potency to hydrocortisone could achieve normal growth,61 and nine children with adrenal insufficiency had normal short-term (6-month) growth velocity when receiving prednisolone at a dose of 15 to one relative potency to hydrocortisone.62 These relative potency ratios are substantially greater than previously suggested dose equivalencies. The use of longer-acting glucocorticoid preparations in children needs further study.

Mineralocorticoid replacement is achieved with fludrocortisone. The dose should be adjusted to maintain plasma renin activity in the mid-normal range. A typical daily dose of fludrocortisone ranges from 100 µg to 200 µg. The dose is independent of body size from childhood to adulthood, although higher doses are commonly needed in early infancy. The use of fludrocortisone therapy in patients with non-salt-losing classic CAH is recommended and allows management with lower doses of glucocorticoid.60,61

Infants with salt-losing CAH commonly need supplementation of sodium chloride (1–2 g daily). Routine salt supplementation is typically not needed after the first 6–12 months of life. However, patients should be encouraged to use salt freely to satisfy salt cravings. Additional salt intake may be needed with exposure to hot weather or with intense exercise. Many patients with non-classic CAH do not need treatment. Treatment is recommended only for those with symptoms and aims to reduce hyperandrogenism.59,61 Glucocorticoid treatment is indicated in children with androgen excess, whereas adult women might need adjuvant antiandrogen therapy. Dexamethasone and antiandrogen drugs should be used with caution and in conjunction with oral contraceptives in young women; both cross the placenta. When fertility is desired, ovulation induction might be necessary60 and a glucocorticoid that does not cross the placenta (eg, prednisolone or prednisone) should be used.

Drugs that induce hepatic microsomal enzymes (CYP450), such as antiepileptic drugs, affect the metabolism of glucocorticoids and can greatly alter the appropriate glucocorticoid dose.64 Flutamide, an antiandrogen, has also been reported to affect hydrocortisone metabolism.65 A prudent approach includes close clinical monitoring and laboratory assessment 4–6 weeks after the patient starts taking a new medication long term.

Stress dosing

Patients with classic CAH cannot mount a sufficient cortisol response to physical stress and need pharmacological doses of hydrocortisone in situations such as febrile illness, surgery, and trauma. Dose guidelines include doubling or tripling the glucocorticoid maintenance dose for the whole day. If a patient is unable to take medication orally, hydrocortisone should be given intramuscularly, and medical advice about the need for intravenous hydration should be promptly sought. The combination of cortisol deficiency and epinephrine deficiency puts patients at risk of hypoglycaemia with illness or fasting. During illnesses, intake of carbohydrates and glucose-containing fluids should be encouraged and glucose monitoring should be considered, especially in children. Patients and parents should receive instructions for these types of emergencies. All patients should wear or carry medical alert identification specifying adrenal insufficiency.

There is no evidence that higher doses of glucocorticoid are needed in times of mental or emotional stress, and higher doses of glucocorticoid should be given only for physical stressors. Exercise, although a physical stressor, does not require increased dosing.6 However, the normal exercise-induced rise in blood glucose concentrations is blunted in patients with CAH, and extra intake of carbohydrates might be useful with exercise.6

Patients with non-classic CAH do not need stress doses of hydrocortisone unless they have iatrogenic suppression of their adrenal glands by glucocorticoid treatment. Thus, a prudent approach is to treat patients with non-classic CAH who are receiving glucocorticoid therapy as if they have adrenal insufficiency.

Clinical challenges

Prenatal therapy

In pregnancies in which the fetus is at risk of classic CAH, maternal dexamethasone treatment has successfully suppressed the fetal HPA axis and reduced the genital ambiguity of affected female infants.66,67 Masculinisation of the external genitalia begins by 8 weeks of gestation. Therefore, if treatment is desired, it
should be started as soon as the pregnancy is confirmed. Chorionic-villus sampling or amniocentesis should be done as early as possible. If the fetus is male or a female not affected, treatment is discontinued. For an affected female fetus, treatment is continued throughout pregnancy. About 85% of prenatally treated female infants are born with normal or slightly virilised genitalia. Treatment failures could be due to early cessation of therapy, late start of treatment, non-adherence, suboptimum dosing, or differences in dexamethasone metabolism.

Prenatal treatment is controversial, since the risk of having an affected female fetus is only one in eight when both parents are known carriers. Therefore, seven of eight fetuses will receive dexamethasone treatment unnecessarily. The efficacy and safety of prenatal dexamethasone treatment remains to be fully defined. Studies in animals have shown that prenatal dexamethasone exposure can impair somatic growth, brain development, and blood-pressure regulation. Long-term human follow-up data are lacking. Potential maternal side-effects include the signs and symptoms of Cushing’s syndrome.

Prenatal dexamethasone therapy should be offered only to parents who have a clear understanding of the possible risks and benefits and who are able to adhere to the essential close monitoring throughout pregnancy. This treatment should be carried out in specialist centres, preferably with the use of an approved research protocol.

Neonatal period
Management of patients with classic CAH during the neonatal period is challenging. Two-thirds of these patients are salt-losers. Neonates are particularly vulnerable to hypovolaemia and electrolyte disturbances, as well as hypoglycaemia. Increased mortality has been reported in patients with CAH. Despite hormone replacement and parental education, about 8% of patients have been reported to experience hypoglycaemia during the first few years of life. These risks have led some practitioners to treat neonates with higher doses of hydrocortisone; however, there is no evidence that higher doses of glucocorticoid protect against hypoglycaemia or life-threatening complications, and epinephrine deficiency probably has a role. Moreover, many studies have found that excessive glucocorticoid use during the first 2 years of life is a risk factor for short stature in adulthood. The hydrocortisone dose in neonates should not exceed 25 mg/m² daily, and monitoring of weight and length supplemented by serial measurement of adrenal steroid concentrations, plasma renin activity, and electrolyte concentrations should guide management. As in older children, the therapeutic goal in the neonatal period should be to find the lowest glucocorticoid dose that achieves acceptable concentrations of adrenal cortical hormones and an acceptable rate of linear growth.

The surgical management of children born with ambiguous genitalia is complex and controversial. The Joint European Society for Paediatric Endocrinology and the Lawson Wilkins Pediatric Endocrine Society recommend that surgery should be done in virilised girls with classic CAH at age 2–6 months because it is technically easier than at later ages; surgery should be done only in medical centres with substantial experience; and management ideally should be by a multidisciplinary team including specialists in paediatric endocrinology, paediatric surgery and urology, psychosocial services, and genetics. Intersex patients’ advocacy groups and others have proposed that medical teams and parents consider the option of not doing surgery so that the patient can decide at an older age and participate fully in an informed-consent process. One argument against surgery is that some rare causes of genital ambiguity have poor outcome in relation to psychosexual identity. Such poor outcomes have not been reported for female patients with CAH. Overall, most girls and women with CAH identify as female, and feminising surgery in the neonatal period remains the standard practice for virilised girls with classic CAH.

Growth and development during childhood
The growth and development of many children with CAH is less than optimum. High concentrations of sex steroids induce premature epiphyseal closure, and excess glucocorticoids suppress growth. Retrospective studies have shown that the final height of treated patients is independent of the degree of control of adrenal androgen concentrations, which suggests that both hyperandrogenism and hypercortisolism contribute to the observed short stature. A meta-analysis of data from 18 centres showed that the mean adult height of patients with classic CAH was 1·4 SD (10 cm) below the population mean.

Several studies have suggested that treatment during the first 2 years of life and that during puberty are the most important factors influencing height outcome. Some investigators have shown improved adult height in patients diagnosed and treated early (salt-losers), and others have reported poor height outcome when higher glucocorticoid doses are used during the first 2 years of life. Another complication is central precocious puberty, which is most likely to develop when the diagnosis of CAH is delayed or with poor control of adrenal androgen secretion. The premature rise in gonadal steroid concentrations compounds the hazard of excess adrenal hormones.

Patients with non-classic CAH have a more favourable height prognosis than those with the classic form. Those who have never been treated have slight growth impairment, and growth suppression secondary to iatrogenic hypercortisolism is also possible. Obesity is common in patients with CAH, and the body-mass index of normally growing children with CAH
increases throughout childhood more than the expected age-related increase.79 The cause of the obesity is unknown, and several factors are probably involved. However, patients with non-classic CAH seem to be at less risk of obesity than patients with the more severe form. In a multicentre study of patients with non-classic CAH, 21% of patients were obese (body-mass index \textasciitilde 30 kg/m2 or higher) at presentation, a proportion similar to that of the general populations of the countries studied.41

Fertility

Reduced fertility has been reported in patients with classic and non-classic CAH, especially in women.34-38 Fertility rates of 60–80% and 7–60% have been reported in women with classic non-salt-losing and classic salt-losing CAH, respectively.29,76 In addition to hormonal causes, structural factors related to genital reconstructive surgery might reduce heterosexual activity and contribute to the infertility observed in patients with classic CAH.45

Pregnancy rates of 50% have been reported in untreated patients with non-classic CAH compared with 93–100% after treatment.101,102 However, the pregnancy rates reported for patients with non-classic CAH are from studies of those in whom the diagnosis of CAH was made after they presented with symptoms or signs of hyperandrogenism. Thus, the fertility data represent only patients with symptoms and might not be representative of the larger population of individuals affected with non-classic CAH. Overall, infertility is the presenting symptom in 13% of women with non-classic CAH.76

An increased incidence of polycystic ovaries is a common finding in mild, but also in classic CAH, and this disorder could contribute to infertility.7,74,75,101 About 40% of patients with non-classic CAH have polycystic ovaries.74,75 Oligomenorrhoea or amenorrhoea can be present in adolescence.74,75 Insulin resistance has been found in patients with both classic and non-classic CAH.46,48 The relation between obesity, hyperandrogenism, insulin resistance, and the development of polycystic ovaries in CAH requires further study.

Despite these findings, fertility prognoses are improving, even among patients with classic salt-losing CAH, possibly as a result of earlier and better treatment of the CAH and advances in genital reconstruction.103,107 Successful pregnancy outcomes are possible in women with classic CAH, and careful management during gestation is indicated, especially if the fetus is female.108

In men with classic and non-classic CAH, ectopic adrenal tissue located in the testes (adrenal rest) can result in oligoazoospermia or Leydig-cell failure.109,112 Higher-dose glucocorticoid therapy can reverse infertility from this cause.111 Surgery is rarely indicated.113 However, when medical therapy fails, testis-sparing surgery can be considered and is preferable to orchidectomy.115 Cryopreservation of semen can be offered.116 Adrenal rest is most commonly found in the testes, but it has also been described in the coeliac plexus, broad ligaments, and ovaries.117,118

Psychological features

Studies of female patients with classic CAH suggest that exposure to excess androgens during prenatal development influences brain development. Indeed, female patients with classic CAH have been found to have more male-typical childhood play than unaffected girls,119,120 are more likely to use physical aggression in conflict situations,121 have less interest in infants and nurturing activities,122 have good spatial and mathematical abilities (similar to men),123 and have more interest in male-typical activities and careers.124 Some studies suggest that women with CAH, especially those who showed male-type behaviour in childhood, have less heterosexual interest than unaffected women.125 Nevertheless, girls with CAH have been found to identify as female and do not have gender-identity confusion or dysphoria.126,127 The effect of postnatal androgen exposure might differ from that of prenatal androgen exposure.

Iatrogenic exposure to excess glucocorticoid and cortisol deficiency in utero or in the untreated state might also affect the psychological well-being of patients with CAH. MRI shows that both male and female patients with classic CAH have smaller amygdala volumes than age-matched controls.127 The amygdala is important in the processing of emotion and is regulated by both glucocorticoids and CRH. White-matter abnormalities on MRI have been reported in children with CAH,128,129 possibly resulting from glucocorticoid therapy. Carriers of 21-hydroxylase deficiency might have increased vulnerability to psychological stress owing to changes in the function of the HPA axis.23 Some studies have found that patients with salt-losing CAH have lower IQ than patients with non-salt-losing CAH,128,130 and learning difficulties in patients with CAH have been associated with early episodes of hypoglycaemia.119 However, patients with CAH have similar intelligence, measured by IQ testing, and similar rates of learning disabilities to their healthy unaffected siblings.130,132 These issues need to be studied in large samples, but, overall, favourable quality-of-life72 and good psychological health126 have been reported in patients with CAH.

Transition from childhood to adulthood

Physicians specialising in adult patients are increasingly confronted with genetic disorders requiring special knowledge, whereas paediatricians face the challenge of anticipating complications arising from these disorders that necessitate long-term planning. CAH constitutes a continuum of disorders
A multidisciplinary team of health-care providers. Anticipatory guidance about clinical issues and changes in medical management needs to be given by the multidisciplinary team of health-care providers.

![Figure 4: Transitional care of patients with CAH](image)

Anticipatory guidance about clinical issues and changes in medical management needs to be given by the multidisciplinary team of health-care providers.

That affect patients throughout their lives (figure 4). The establishment of multidisciplinary clinics involving close interaction between paediatric, reproductive, and adult endocrinologists and clinical psychologists experienced in psychosexual counselling will enable comprehensive care for patients with CAH.134–138

Physicians caring for adult patients with CAH need to be aware of the frequent development of polycystic ovary syndrome in female patients and testicular adrenal rest in male patients. Adrenal-rest tissue can be misinterpreted as testicular cancer, which can lead to unnecessary orchidectomy. In general, patients with CAH have normal bone mineral density;139,140 however, the potential development of osteoporosis needs to be considered in patients who have received high glucocorticoid doses.141 Most importantly, the long-term consequences of insulin resistance and obesity need to be considered. Psychosexual issues also should be addressed.

Future therapies

Pharmacological approach

Promising experimental approaches to the treatment of CAH are being developed. Blockade of excess sex steroid production to allow the use of lower glucocorticoid doses is currently being studied as an alternative regimen. Children receiving a four-drug regimen of low-dose hydrocortisone, fludrocortisone, flutamide (an androgen-receptor antagonist), and testolactone (an aromatase inhibitor that blocks oestrogen production) showed normal linear growth and bone maturation after 2 years of treatment.142 A long-term study of this regimen is under way. One short-term study of children with CAH showed improvement in growth rate and final height prediction with gonadotropin-releasing-hormone agonists used alone and in combination with growth hormone.143 Metformin, an antidiabetic agent, decreases ovarian and adrenal hyperandrogenism while improving menstrual disorders in patients with primary polycystic ovary syndrome and insulin resistance144,145 and could be beneficial in patients with CAH. None of these experimental therapies is recommended as the standard of care, and long-term data are not yet available. CRH antagonists are being tested in animals146,147 and represent a potential novel therapeutic approach not yet ready for human use.

Surgical approach

Management should, in theory, be easier in the absence of adrenocortical stimulation, and bilateral adrenalectomy has been done in patients with CAH.148 Reported long-term (average 5 years) follow-up of 18 patients with CAH who underwent bilateral adrenalectomy revealed improved signs and symptoms of hyperandrogenism and less obesity after surgery.149 However, a minimum dose of hydrocortisone of 11 mg/m² daily was necessary in most patients to prevent hyperpigmentation and the activation of adrenal-rest tissue. Arguments against adrenalectomy include surgical and anaesthesia risk (although adrenalectomy is routinely done by laparoscopy with low morbidity and almost no mortality) and a possible increase in susceptibility to adrenal crisis and sudden death. In addition, patients might benefit from postoperative treatment with dehydroepiandrosterone, which improves well-being in women with adrenal insufficiency.150

Gene therapy

Gene therapy might be feasible for 21-hydroxylase deficiency, because the disorder is caused by a single gene defect. Selective adrenotropism for adenoviruses has been shown in animals.151,152 A single intra-adrenal injection of adenoviral vector encoding the 21-hydroxylase gene restored the impaired adrenocortical function in 21-hydroxylase knockout mice,153 and bovine adrenocortical cells have shown functional and morphological changes in the adrenal cortex after transfection with recombinant adenoviruses.154

Other options that might have the potential for complete or partial cure of CAH include transplantation of adrenal cells or tissue or stem-cell approaches. However, basic research on such strategies is at an early stage, and any type of cell or gene transfer system needs to fit into the spatial and temporal organisation of adrenal physiology.
Conclusion
There have been striking improvements during the past 50 years in our understanding of the pathophysiology of CAH, and the management and treatment of patients with this disorder continues to improve. Genetic, pathological, and clinical heterogeneity makes the diagnosis and treatment particularly challenging. Several unresolved clinical issues in the management of this complex disorder demand further investigation. Ultimately, improvement of the quality of life of patients with CAH requires a deeper understanding of the complex regulation of adrenal steroid production. New medical strategies that offer the prospect of an improved outcome of treatment continue to evolve.

Conflict of interest statement
We declare that we have no conflict of interest.

Acknowledgments
DPM is a Commissioned Officer in the US Public Health Service.

References
14 Tusie-Luna MT, White PC. Gene conversions and unequal crossovers between CYP21 (steroid 21-hydroxylase gene) and CYP21P involve different mechanisms. Proc Natl Acad Sci USA 1995; 92: 10796–800.

54 Seckl JR, Miller WL. How safe is long-term prenatal glucocorticoid treatment? JAMA 1997; 277: 1077–79.

www.thelancet.com Vol 365 June 18, 2005