Dia 4

2.3 Ejercicios Las respuestas a los problemas impares seleccionados comienzan en la página RESP-5.

Supongamos que en los problemas 1 a 86 todas las variables son diferentes de cero.

En los problemas 1 a 4, escriba la expresión con exponentes

- 2. 3 · 3 · 3
- 3. 2y · 2y · 2y · 2y

En los problemas 9 a 14, resuelva los números indicados.

- 9. a) 3⁴
 - $b) 3^{-4}$
 - $c) -3^4$
- **10.** a) $(\frac{1}{3})^3$
 - **b**) $\left(-\frac{1}{3}\right)^{-3}$
 - c) $(\frac{1}{3})^{-3}$
- 11. a) $(-7)^2$
 - **b**) $(-7)^{-2}$
 - c) $-(7)^{-2}$
- **12.** a) $\left(-\frac{2}{3}\right)^5$
 - **b**) $\left(-\frac{2}{3}\right)^{-5}$
 - c) $-(-\frac{2}{3})^5$
- **13.** a) (5)⁰
 - $b) (-5)^0$
 - c) -5⁰
- **14.** a) $(-1)^{-1}$ b) $(1)^{-1}$
 - $c) (-1)^{-1}$

En los problemas 15 a 20, evalúe la expresión.

- **15.** $2^{-1} 2^1$

- **18.** $\frac{(-1)^5 2^6}{(-1)^{-1}}$

En los problemas 5 a 8, escriba la expresión con exponentes negativos.

- **35.** $(5x)^2$
- **36.** $(-4x)^3$
- 37. $(5^2)^3$
- **38.** $(x^4)^{-5}$
- **39.** $(4x^2y^{-1})^3$
- **40.** $(3x^2y^4)^{-2}$
- **42.** $\frac{-x^5(y^2)^3}{(xy)^2}$
- **43.** $\frac{(7a^2b^3)^2}{a^3b^5}$
- **44.** $\frac{(-4x^5y^{-2})^3}{x^7y^{-3}}$

- **47.** $\left(\frac{a^3b^3}{b^{-2}}\right)^2$ **48.** $(-x^2y^4)^3(x^3y^{-1})^2$

20.
$$\frac{(1-1)^0}{1^0}$$

En los problemas 21 a 26, encuentre el valor de la expresión $\sin a = 2, b = -3 \text{ y } c = -1.$

21.
$$-2ab + c^2$$

22.
$$ab^2 - c^3$$

23.
$$ab^2 + bc^2 + ca^2$$

24.
$$a^{-1}b^{-1}c^{-1}$$

25.
$$ab^{-1} + ca^{-1}$$

26.
$$a^{-1} + b^{-1} + c^{-1}$$

En los problemas 27 a 50, simplifique y elimine cualquier exponente negativo.

27.
$$x^6x^{-2}$$

29.
$$(7x^4)(-3x^2)$$

30.
$$(-5x^2y^3)(3xy^{-2})$$

50.
$$\frac{(3abc)^3}{(2a^{-1}b^{-2}c)^3}$$

En los problemas 51 a 56, determine si el número dado es positivo o negativo.

51.
$$(-4)^{-3}(2^{-4})$$

52.
$$(-1)^{-1}(-1)^{0}(-1)$$

53.
$$[10^{-5}(-10)^{5}(-10)^{-5}]^2$$

54.
$$[(-1)^{-2}]^{-3}$$

55.
$$[-10-10]^{-10+10}$$

56.
$$[\pi^2\pi^3\pi^{-4}]^{-1}$$

En los problemas 57 a 62, escriba una fórmula para la cantidad dada usando exponentes.

- 57. El área A de un cuadrado es el cuadrado de la longitud s de un lado.
- 58. El volumen V de un cubo es el cubo de la longitud s de un

60. El volumen
$$V$$
 de una esfera es $\frac{4}{3}\pi$ veces el cubo del radio r .

- 61. El volumen V de un cilindro circular recto es π por el cuadrado del radio r por la altura h.
- El área A de un triángulo equilátero es √3/4 veces el cuadrado de la longitud s de un lado.

En los problemas 73-84, simplifique cada expresión.

73.
$$(-4)^2$$

74.
$$-4^2$$
 75. 4^{-2} 80. $(2^{-1})^{-3}$ 81. $\sqrt{25}$

76.
$$-4^{-2}$$
 77. $3^{-6} \cdot 3^4$ 78. $4^{-2} \cdot 4^3$ 82. $\sqrt{36}$ 83. $\sqrt{(-4)^2}$ 84. $\sqrt{(-3)^2}$

80.
$$(2^{-1})^{-1}$$

81.
$$\sqrt{25}$$

82.
$$\sqrt{36}$$

83.
$$\sqrt{(-4)}$$

84.
$$\sqrt{(-3)^2}$$

En los problemas 85-94, simplifique cada expresión. Escriba la respuesta de manera que todos los exponentes sean positivos. Siempre que un exponente es 0 o negativo, se supone que la base no es 0.

85.
$$(8x^3)$$

86.
$$(-4x^2)^{-1}$$

88.
$$(x^{-1}y)^{\frac{1}{2}}$$

89.
$$\frac{x^2y^3}{xy^4}$$

90.
$$\frac{x^{-2}y}{xy^2}$$

85.
$$(8x^3)^2$$
 86. $(-4x^2)^{-1}$ 87. $(x^2y^{-1})^2$ 88. $(x^{-1}y)^3$ 89. $\frac{x^2y^3}{xy^4}$ 90. $\frac{x^{-2}y}{xy^2}$ 91. $\frac{(-2)^3x^4(yz)^2}{3^2xy^3z}$ 92. $\frac{4x^{-2}(yz)^{-1}}{2^3x^4y}$ 93. $\left(\frac{3x^{-1}}{4y^{-1}}\right)^{-2}$ 94. $\left(\frac{5x^{-2}}{6y^{-2}}\right)^{-3}$

92.
$$\frac{4x^{-2}(yz)^{-1}}{2^3x^4y}$$

93.
$$\left(\frac{3x^{-1}}{4y^{-1}}\right)^{-2}$$

94.
$$\left(\frac{5x^{-2}}{6y^{-2}}\right)^{-1}$$

En los problemas 95-106, encuentre el valor de cada expresión si x = 2 y y = -1. 95. $2xy^{-1}$ 96. $-3x^{-1}y$ 97. $x^2 + y^2$ 98. x^2y^2 99. $(xy)^2$ 100. $(x + y)^2$

95.
$$2xv^{-1}$$

96.
$$-3x^{-1}y$$

97.
$$x^2 + v^2$$

98.
$$x^2v^2$$

100.
$$(x + y)^2$$