Materiales de Ingeniería Diseño I Profesor: Libardo Vanegas Useche 17 de febrero de 2011

Contenido

- Introducción
- 1) Metales
 - Aceros
 - Aleaciones de aluminio
 - Titanio y magnesio
 - Fundiciones ferrosas
- 2) Polímeros
- 3) Cerámicos
- Compuestos

Introducción: metales

Callister, W. D. Jr. (2007) Materials Science and Engineering – An Introduction. John Wiley & Sons, Inc., $7^{\rm th}$ ed. U.S.A.

Introducción: polímeros

Callister, W. D. Jr. (2007) Materials Science and Engineering – An Introduction. John Wiley & Sons, Inc., $7^{\rm th}$ ed. U.S.A.

Introducción: cerámicos

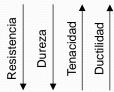
Callister, W. D. Jr. (2007) Materials Science and Engineering – An Introduction. John Wiley & Sons, Inc., $7^{\rm th}$ ed. U.S.A.

Introducción: selección

En el diseño se deben seleccionar:

- Geometrías
- Dimensiones
- Materiales
- Tratamientos térmicos, termoquímicos, etc.
- Métodos de manufactura, montaje y mantenimiento
 - → Se deben conocer los materiales de ingeniería, sus propiedades y características

• ¿Qué es el acero?


Fe + **C**+ **Mn** + elementos de aleación + impurezas

- Es un material metálico (~99% Fe, pero a veces mucho menos)
- Carbono (<~1%) → gran efecto sobre las propiedades
- Elementos de aleación: Ni, Mo, Cr, V, Si, S... → para mejorar propiedades
- Control de impurezas
- **Propiedades**: alta resistencia, rigidez, facilidad de producción y bajo costo relativo

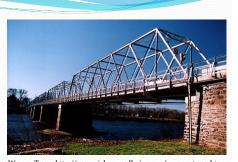
Aceros

• Clasificación según contenido de C

Denominación	Rango de porcentaje de carbono	cia
Acero suave o dulce	0.05% a 0.30%	ster
Acero medio	0.30% a 0.50%	Resi
Acero duro	0.50% a 0.95%	L 4

Clasificación según su aplicación

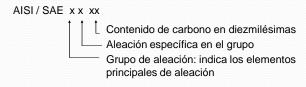
Denominación


Acero estructural Acero de maquinaria Acero de herramientas

Aceros suaves

 $Warren\ Truss, http://www.richmangalleries.com/warren_truss.htm$

Cragar Classic Wheels, http://www.texasautotrim.com/Cragar_Classic.htm


 Clasificación según <u>existencia de elementos de</u> <u>aleación</u>

Denominación	Elementos
Acero al carbono	Fe + C + Mn + impurezas
Acero aleado	Fe + C + Mn + elementos de aleación + impurezas

- Aceros al carbono: más económicos
- Aceros aleados: mejores con respecto a cierta(s) propiedade(s)

Aceros

- Designación
 - AISI (American Iron and Steel Institute)
 - SAE (Society of Automotive Engineers)
 - ASTM (American Society for Testing and Materials)
 - NTC (norma técnica colombiana)

Ejemplos:

•AISI 1045. 10: acero al carbono. 45: 0.45% de carbono.

•AISI 4340. 4: acero con aleación de molibdeno. 3: contiene níquel y cromo. (43: 1.8% Ni, 0.5% ó 0.8% Cr y 0.25% Mo). 40: 0.40% de carbono

- <u>Fabricantes de aceros</u>:
 - Acerías de Caldas S.A. (Acasa)
 - Acerías Paz del Río S.A.
 - Siderúrgica del Pacífico S.A. (Sidelpa)
 - Diaco S.A.
- Normas:
 - NTC
 - ASTM
 - AISI/SAE
- Aceros comunes:
 - ASTM A-36 (NTC 1920), ASTM A-572 (NTC 1985)
 - SAE 1020, 1035, 1045, 1060, 4340, 4140

Aluminium deal rumours heats up the markets, http://www.labnol.org/india/corporate/aluminiu m-deal-rumours-heats-up-the-markets/249/

Otros metales

- Aleaciones de aluminio
 - Alta relación resistencia/peso
 - Resistencia a la corrosión

 $The \ World \ of \ Glass \ Doors, http://www.mame.de/english/produkte.html$

Aluminum Overcast 2056, http://flickr.com/photos/82002080@Noo/2716256267

Otros metales

- Aleaciones de aluminio
 - Alta relación resistencia/peso
 - Resistencia a la corrosión
- <u>Titanio y Magnesio</u>
 - Relación resistencia/peso aún mayor
 - Resistencia a la corrosión

¡Yes, That is Titanium in That Product! http://www.titanium.c om/titanium/coolstuf.cfm

Aerospace applications, Titanium Industries, Inc., http://www.titanium.com/titanium/aerospac.cfm

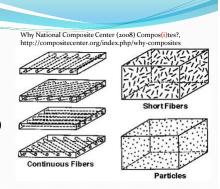
F-22 Raptor

Otros metales

- Aleaciones de aluminio
 - Alta relación resistencia/peso
 - Resistencia a la corrosión
- <u>Titanio y Magnesio</u>
 - Relación resistencia/peso aún mayor
 - Resistencia a la corrosión
- Fundiciones
 - Piezas de formas complejas

http://www.trustmymechanic.com/es/autom otive/rebuiltmotor/tcadillactmmgmc_2000lb _i.html

Servorecambios S.A., http://www.servorecambios.c om/motores/abb_fundicion_h ierro.shtml



- Concreto (hormigón)
- Plástico reforzado (ej. "fibra de vidrio")
- Con matriz metálica o cerámica

Madera

787 Dreamliner: el avión verde – Julio 6, 2007 http://idem.wordpress.com/2007/07/06/787-dreamliner-el-avion-verde/

Contenido

- Introducción
- 1) Metales
 - Aceros
 - Aleaciones de aluminio
 - Titanio y magnesio
 - Fundiciones ferrosas
- 2) Polímeros
- 3) Cerámicos
- Compuestos